Contents
Images
Upload your image
DSS Images Other Images
Related articles
Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| Hipparcos red stars in the HpV_T2 and V I_C systems For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997
| Spectral and luminosity classification for the cool components in symbiotic stars The near infrared spectra of 12 S-type symbiotic stars and 78 comparisonstars have been observed with moderate dispersion in five runs from 1992to 1997, the resolving power being R= (lambda )/(Delta lambda )>2000,with a signal to noise ratio S/N>100. The triple-headed absorptionband of TiO (lambda lambda 8432, 8422 and 8452 Ä) emerges when astar is later than M2, and the depth of the TiO absorption band is verysensitive to the spectral type (ST) and insensitive to the luminosityclass of the star. We fit a curve of spectral type against the index ofthe absorption depth of this band with a standard deviation sigma =0.37of a subdivision of one spectral type. The IR CaII triplet (lambdalambda 8498, 8542, 8662 Ä ), Fe I 8689 Ä, and Fe I 8675 Äare good luminosity indicators although the equivalent widths (EWs) ofthese lines clearly decrease for a star later than M3. When the star isa supergiant, the lines have a smaller central residual intensity andbroader wings than in the case of a normal giant. The Ca II 8662 Ä/Fe I 8675 Ä and Fe I 8689 Ä /Fe I 8675 Ä ratios are alsogood luminosity indicators for K-type giants. The latter is particularlyuseful when there are abundance anomalies. The metal-poor symbiotic starAG Dra is classified as a Ib or II giant, as is TX CVn, on the basis ofFe I 8689 Ä /Fe I 8675 Ä. 9 other symbiotic stars containingM-type cool components are classified as giants by direct comparison andquantitative analysis. Due to there being no known good ratio indicatorof luminosity for M-type stars in the band studied and because there isno metal abundance data for the symbiotic stars studied by us except forAG Dra, the results for these 9 symbiotic stars are only preliminary.The infrared Ca II triplet of most symbiotic stars clearly variesbetween the different observing runs. The different luminosity classesgiven to the same symbiotic star are probably caused by the variabilityof the lines of ionized elements, while in some cases they are affectedby a low metal abundance.
| Stellar radii of M giants We determine the stellar radii of the M giant stars in the Hipparcoscatalogue that have a parallax measured to better than 20% accuracy.This is done with the help of a relation between a visual surfacebrightness parameter and the Cousins (V - I) colour index, which wecalibrate with M giants with published angular diameters.The radii of(non-Mira) M giants increase from a median value of 50 R_Sun at spectraltype M0 III to 170 R_Sun at M7/8 III. Typical intermediate giant radiiare 65 R_Sun for M1/M2, 90 R_Sun for M3, 100 R_Sun for M4, 120 R_Sun forM5 and 150 R_Sun for M6. There is a large intrinsic spread for a givenspectral type. This variance in stellar radius increases with latertypes but in relative terms, it remains constant.We determineluminosities and, from evolutionary tracks, stellar masses for oursample stars. The M giants in the solar neighbourhood have masses in therange 0.8-4 M_Sun. For a given spectral type, there is a close relationbetween stellar radius and stellar mass. We also find a linear relationbetween the mass and radius of non-variable M giants. With increasingamplitude of variability we have larger stellar radii for a given mass.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars Results are presented of an extensive X-ray survey of 380 giant andsupergiant stars of spectral types from F to M, carried out with theEinstein Observatory. It was found that the observed F giants orsubgiants (slightly evolved stars with a mass M less than about 2 solarmasses) are X-ray emitters at the same level of main-sequence stars ofsimilar spectral type. The G giants show a range of emissions more than3 orders of magnitude wide; some single G giants exist with X-rayluminosities comparable to RS CVn systems, while some nearby large Ggiants have upper limits on the X-ray emission below typical solarvalues. The K giants have an observed X-ray emission level significantlylower than F and F giants. None of the 29 M giants were detected, exceptfor one spectroscopic binary.
| Narrow-band photometry of late-type stars. II This paper presents extensive narrow-band photometry in the Uppsalasystem supplementing earlier published mesurements so that data now areavailable for all late-type stars brighter than V = 6.05 and a number ofgalactic cluster members. Numerous UBV and BV measurements are alsopublished. The data are used to determine relations for the predictionof UBV intrinsic colors for late-type stars from the narrow-bandmeasurements. The main purpose of the data is to constitute the basisfor the determination of solar-neighborhood space densities of late-typestars, mainly giants of different kinds; these space densities will becombined with narrow-band data for fainter stars in the north Galacticpole region to yield the decrease of space density with distance fromthe galactic plane for many kinds of late-type stars.
| The luminosity dependence of the 1.65-micron flux from K and early M stars - Observations and interpretation A number of late-type stars of various luminosity classes have beenobserved in three infrared colors to study the luminosity dependence ofthe '1.65-micron peak' around the minimum of H(-) absorption. Anunexpected luminosity dependence (lower peaks) has been found for K andearly M supergiants as compared with the giants. Comparisons withmodel-atmosphere computations, which are in relatively good agreementwith the observations, explain the effect as the result of blocking byCO and CN lines in the infrared.
| Spectral and Luminosity Classification of the Bright Sequence Stars in the C Regions. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1955ApJ...121...32N&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | うお座 |
Right ascension: | 01h10m11.50s |
Declination: | +15°40'27.0" |
Apparent magnitude: | 6.06 |
Distance: | 170.94 parsecs |
Proper motion RA: | 21.2 |
Proper motion Dec: | -26.3 |
B-T magnitude: | 8.112 |
V-T magnitude: | 6.232 |
Catalogs and designations:
|