Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 210910


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A holistic approach to carbon-enhanced metal-poor stars
Context. Carbon-enhanced metal-poor (CEMP) stars are known to haveproperties that reflect the nucleosynthesis of the first low- andintermediate-mass stars, because most have been polluted by anow-extinct AGB star. Aims: By considering abundances in thevarious CEMP subclasses separately, we try to derive parameters (such asmetallicity, mass, temperature, and neutron source) characterising AGBnucleosynthesis from the specific signatures imprinted on theabundances, and separate them from the impact of thermohaline mixing,first dredge-up, and dilution associated with the mass transfer from thecompanion. Methods: To place CEMP stars in a broader context, wecollect abundances for about 180 stars of various metallicities (fromsolar to [Fe/H] =-4), luminosity classes (dwarfs and giants), andabundance patterns (e.g. C-rich and poor, Ba-rich and poor), from bothour own sample and the literature. Results: We first show thatthere are CEMP stars that share the properties of CEMP-s stars andCEMP-no stars (which we refer to as CEMP-low-s stars). We also show thatthere is a strong correlation between Ba and C abundances in the s-onlyCEMP stars. This represents a strong detection of the operation of the13C neutron source in low-mass AGB stars. For the CEMP-rsstars (seemingly enriched with elements from both the s- andr-processes), the correlation of the N abundances with abundances ofheavy elements from the 2nd and 3rd s-process peaks bears instead thesignature of the 22Ne neutron source. Since CEMP-rs starsalso exhibit O and Mg enhancements, we conclude that extremely hotconditions prevailed during the thermal pulses of the contaminating AGBstars. We also note that abundances are not affected by the evolution ofthe CEMP-rs star itself (especially by the first dredge-up). Thisimplies that mixing must have occurred while the star was on the mainsequence, and that a large amount of matter must have been accreted soas to trigger thermohaline mixing. Finally, we argue that most CEMP-nostars (with neutron-capture element abundances comparable to non-CEMPstars) are likely the extremely metal-poor counterparts of CEMPneutron-capture-rich stars. We also show that the C enhancement inCEMP-no stars declines with metallicity at extremely low metallicity([Fe/H] < -3.2). This trend is not predicted by any of the currentAGB models.Tables 1-4 are only available in electronic form at http://www.aanda.org

Ruthenium and hafnium abundances in giant and dwarf barium stars
Aims.We present abundances for Ru and Hf, compare them to abundances ofother heavy elements, and discuss the problems found in determining Ruand Hf abundances with laboratory gf-values in the spectra of bariumstars. Methods: We determined Ru and Hf abundances in a sample of giantand dwarf barium stars, by the spectral synthesis of two Ru I(λ4080.574 and λ4757.856) and two Hf II (λ4080.437and λ4093.155) transitions. The stellar spectra were observedwith FEROS/ESO, and the stellar atmospheric parameters lie in the range4300 < T_eff/K < 6500, -1.2 < [Fe/H] ≤ 0 and 1.4 ≤ log g< 4.6. Results: The Hf II λ4080 and the Ru I λ4758observed transitions result in a unreasonably high solar abundance,given certain known uncertainties, when fitted with laboratorygf-values. For these two transitions we determined empirical gf-valuesby fitting the observed line profiles of the spectra of the Sun andArcturus. For the sample stars, this procedure resulted in a goodagreement of Ru and Hf abundances given by the two available lines. Theresulting Ru and Hf abundances were compared to those of Y, Nd, Sm andEu. In the solar system Ru, Sm and Eu are dominated by the r-process andHf, Nd and Y by the s-process, and all of these elements are enhanced inbarium stars since they lie inside the s-process path. Ru abundancesshow large scatter when compared to other heavy elements, whereas Hfabundances show less scatter and closely follow the abundances of Sm andNd, in good agreement with theoretical expectations. We also suggest apossible, unexpected, correlation of Ru and Sm abundances. The observedbehaviour in abundances is probably due to variations in the13C pocket efficiency in AGB stars, and, though masked byhigh uncertainties, hint at a more complex scenario than proposed bytheory.Based on spectroscopic observations collected at the European SouthernObservatory (ESO), within the Observatório Nacional ON/ESO andON/IAG agreements, under FAPESP project No. 1998/10138-8. Tables 3-5 areonly available in electronic form at http://www.aanda.org

Analysis of 26 barium stars. II. Contributions of s-, r-, and p-processes in the production of heavy elements
Context: .Barium stars show enhanced abundances for the slow neutroncapture (s-process) heavy elements, so they are suitable objects forstudying s-process elements. Aims: .The aim of this work is toquantify the contributions of the s-, r-, and p-processes for the totalabundance of heavy elements from abundances derived for a sample of 26barium stars. The abundance ratios between these processes and neutronexposures were studied. Methods: .The abundances of the samplestars were compared to those of normal stars, thus identifying thefraction relative to the main component of the s-process. Results:.The fittings of the σ N curves (neutron-capture cross-sectiontimes abundance, plotted against atomic mass number) for the samplestars suggest that the material from the companion asymptotic giantbranch star had approximately the solar isotopic composition as concernsfractions of abundances relative to the s-process main component. Theabundance ratios of heavy elements, hs, ls, and s and the computedneutron exposure are similar to those of post-AGB stars. For some samplestars, an exponential neutron exposure fits the observed data well,whereas a single neutron exposure provides a better fit for others. Conclusions: .The comparison of barium and AGB stars supports thehypothesis of binarity for the barium star formation. Abundances ofr-elements that are part of the s-process path in barium stars areusually higher than those in normal stars, so barium stars also seemedto be enriched in r-elements, although to a lower degree thans-elements. No dependence on luminosity classes was found in theabundance-ratio behaviour among the dwarfs and giants of the sample ofbarium stars.

Analysis of 26 barium stars. I. Abundances
Context: .We present a detailed analysis of 26 barium stars, includingdwarf barium stars, providing their atmospheric parameters (T_eff, logg, [Fe/H], v_t), and elemental abundances. Aims: .We aim atderiving gravities and luminosity classes of the sample stars, inparticular to confirm the existence of dwarf barium stars. Accurateabundances of chemical elements were derived. We present the abundanceratios between nucleosynthetic processes, by using Eu and Ba asrepresentatives of the r- and s-processes. Methods:.High-resolution spectra were obtained with the FEROS spectrograph atthe ESO-1.52 m Telescope, along with photometric data with Fotrap at theZeiss telescope at the LNA. The atmospheric parameters were derived inan iterative way, with temperatures obtained from colour-temperaturecalibrations. The abundances were derived using spectrum synthesis forLi, Na, Al, α-, iron-peak, s-, and r-element atomic lines, and forC and N molecular lines. Results: .Atmospheric parameters in therange 4300 < T_eff < 6500, -1.2 < [Fe/H] < 0.0, and 1.4≤ log g < 4.6 were derived, confirming that our sample containsgiants, subgiants, and dwarfs. The abundance results obtained for Li,Al, Na, α-, and iron-peak elements for the sample stars show thatthey are compatible with the values found in the literature for normaldisk stars in the same range of metallicities. Enhancements of C, N, andheavy elements relative to Fe, that characterise barium stars, werederived and showed that [X/Ba] vs. [Ba/H] and [X/Ba] vs. [Fe/H] presentdifferent behaviour as compared to [X/Eu] vs. [Eu/H] and [X/Eu] vs.[Fe/H], reflecting the different nucleosynthetic sites for the s- andr-processes.

Barium stars, galactic populations and evolution.
In this paper HIPPARCOS astrometric and kinematical data together withradial velocities from other sources are used to calibrate bothluminosity and kinematics parameters of Ba stars and to classify them.We confirm the results of our previous paper (where we used data fromthe HIPPARCOS Input Catalogue), and show that Ba stars are aninhomogeneous group. Five distinct classes have been found i.e. somehalo stars and four groups belonging to disk population: roughlysuper-giants, two groups of giants (one on the giant branch, the otherat the clump location) and dwarfs, with a few subgiants mixed with them.The confirmed or suspected duplicity, the variability and the range ofknown orbital periods found in each group give coherent resultssupporting the scenario for Ba stars that are not too highly massivebinary stars in any evolutionary stages but that all were previouslyenriched with Ba from a more evolved companion. The presence in thesample of a certain number of ``false'' Ba stars is confirmed. Theestimates of age and mass are compatible with models for stars with astrong Ba anomaly. The mild Ba stars with an estimated mass higher than3Msun_ may be either stars Ba enriched by themselves or``true'' Ba stars, which imposes new constraints on models.

Absolute magnitudes and kinematics of barium stars.
The absolute magnitude of barium stars has been obtained fromkinematical data using a new algorithm based on the maximum-likelihoodprinciple. The method allows to separate a sample into groupscharacterized by different mean absolute magnitudes, kinematics andz-scale heights. It also takes into account, simultaneously, thecensorship in the sample and the errors on the observables. The methodhas been applied to a sample of 318 barium stars. Four groups have beendetected. Three of them show a kinematical behaviour corresponding todisk population stars. The fourth group contains stars with halokinematics. The luminosities of the disk population groups spread alarge range. The intrinsically brightest one (M_v_=-1.5mag,σ_M_=0.5mag) seems to be an inhomogeneous group containing bariumbinaries as well as AGB single stars. The most numerous group (about 150stars) has a mean absolute magnitude corresponding to stars in the redgiant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group containsbarium dwarfs, the obtained mean absolute magnitude is characteristic ofstars on the main sequence or on the subgiant branch (M_v_=3.3mag,σ_M_=0.5mag). The obtained mean luminosities as well as thekinematical results are compatible with an evolutionary link betweenbarium dwarfs and classical barium giants. The highly luminous group isnot linked with these last two groups. More high-resolutionspectroscopic data will be necessary in order to better discriminatebetween barium and non-barium stars.

Taxonomy of barium stars
Spectral classification, barium intensity, radial velocity, luminosity,and kinematical properties are determined for 389 barium stars byanalyzing image-tube spectra and photometric observation data. Diskkinematics for the stars are based on whether they are Ba weak or Bastrong. Weak barium stars in general have smaller velocity dispersions,brighter apparent magnitude, and lower luminosity than strong bariumstars. These characteristics are confirmed by solving for meanspectroscopic distances, z-scale height distances, and reduced propermotions.

Kinematic and spatial distributions of barium stars - Are the barium stars and AM stars related?
The possibility of an evolutionary link between Am stars and bariumstars is considered, and an examination of previous data suggests thatbarium star precursors are main-sequence stars of intermediate mass, aremost likely A and/or F dwarfs, and are intermediate-mass binaries withclose to intermediate orbital separations. The possible role of masstransfer in the later development of Am systems is explored. Masstransfer and loss from systems with a range of masses and orbitalseparations may explain such statistical peculiarities of barium starsas the large dispersion in absolute magnitude, the large range ofelemental abundances from star to star, and the small number of starswith large peculiar velocities.

Objective-prism discoveries in the declination zone 0 deg to -20 deg
An inspection of 130 10-deg-prism plates taken for the University ofMichigan Southern Spectral Survey has yielded 154 new peculiar orotherwise interesting stars. The regions surveyed are mainly at fairlyhigh galactic latitudes; this fills a gap in previous work of this type.About three-quarters of the objects will eventually be reclassified byHouk in a systematic work on all of the Henry Draper Catalogue stars,but many of these are of sufficient interest to justify earlypublication.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Wassermann
Right ascension:22h13m42.22s
Declination:-03°46'32.8"
Apparent magnitude:8.492
Distance:163.132 parsecs
Proper motion RA:16.8
Proper motion Dec:-46
B-T magnitude:9.878
V-T magnitude:8.607

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 210910
TYCHO-2 2000TYC 5228-1269-1
USNO-A2.0USNO-A2 0825-19591680
HIPHIP 109733

→ Request more catalogs and designations from VizieR