Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 4907-704-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A Catalog of Rotation and Activity in Early-M Stars
We present a catalog of rotation and chromospheric activity in a sampleof 334 M dwarfs of spectral types M0-M4.5 populating the parameter spacearound the boundary to full convection. We obtain high-resolutionoptical spectra for 206 targets and determine projected rotationalvelocity, vsin i, and H? emission. The data are combined withmeasurements of vsin i in field stars of the same spectral type from theliterature. Our sample adds 157 new rotation measurements to theexisting literature and almost doubles the sample of available vsin i.The final sample provides a statistically meaningful picture of rotationand activity at the transition to full convection in the solarneighborhood. We confirm a steep rise in the fraction of active stars atthe transition to full convection known from earlier work. In addition,we see a clear rise in rotational velocity in the same stars. In veryfew stars, no chromospheric activity but a detection of rotationalbroadening is reported. We argue that all of them are probably spuriousdetections; we conclude that in our sample all significantly rotatingstars are active, and all active stars are significantly rotating. Therotation-activity relation is valid in partially and in fully convectivestars. Thus, we do not observe any evidence for a transition from arotationally dominated dynamo in partially convective stars to arotation-independent turbulent dynamo in fully convective stars;turbulent dynamos in fully convective stars of spectral types around M4are still driven by rotation. Finally, we compare projected rotationalvelocities of 33 stars to rotational periods derived from photometry inthe literature and determine inclinations for a few of them.

Close Companions to Young Stars. I. A Large Spectroscopic Survey in Chamaeleon I and Taurus-Auriga
We present the results of a multiplicity survey of 212 T Tauri stars inthe Chamaeleon I and Taurus-Auriga star-forming regions, based onhigh-resolution spectra from the Magellan Clay 6.5 m telescope. Fromthese data, we achieved a typical radial velocity (RV) precision of ~80m s-1 with slower rotators yielding better precision,in general. For 174 of these stars, we obtained multi-epoch data withsufficient time baselines to identify binaries based on RV variations.We identified eight close binaries and four close triples, of whichthree and two, respectively, are new discoveries. The spectroscopicmultiplicity fractions we find for Chamaeleon I (7%) and Taurus-Auriga(6%) are similar to each other, and to the results of field star surveysin the same mass and period regime. However, unlike the results fromimaging surveys, the frequency of systems with close companions in oursample is not seen to depend on primary mass. Additionally, we do notfind a strong correlation between accretion and close multiplicity. Thisimplies that close companions are not likely the main source of theaccretion shut down observed in weak-lined T Tauri stars. Our resultsalso suggest that sufficient RV precision can be achieved for at least asubset of slowly rotating young stars to search for hot Jupiter planets.

Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices
Context. The search for extra-solar planets similar to Earth is becominga reality, but as the level of the measured radial-velocity reaches thesub-m s-1, stellar intrinsic sources of noise capable ofhiding the signal of these planets from scrutiny become more important. Aims: Other stars are known to have magnetic cycles similar tothat of the Sun. The relationship between these activity variations andthe observed radial-velocity is still not satisfactorily understood.Following our previous work, which studied the correlation betweenactivity cycles and long-term velocity variations for K dwarfs, we nowexpand it to the lower end of the main sequence. In this first paper ouraim is to assess the long-term activity variations in the low end of themain sequence, having in mind a planetary search perspective. Methods: We used a sample of 30 M0-M5.5 stars from the HARPS M-dwarfplanet search program with a median timespan of observations of 5.2years. We computed chromospheric activity indicators based on the Ca iiH and K, H?, He i D3, and Na i D1 and D2 lines. All data werebinned to average out undesired effects such as rotationally modulatedatmospheric inhomogeneities. We searched for long-term variability ofeach index and determined the correlations between them. Results:While the SCa II, H?, and Na i indices showedsignificant variability for a fraction of our stellar sample (39%, 33%,and 37%, respectively), only 10% of our stars presented significantvariability in the He i index. We therefore conclude that this index isa poor activity indicator at least for this type of stars. Although theH? shows good correlation with SCa II for the mostactive stars, the correlation is lost when the activity level decreases.This result appears to indicate that the Ca ii - H? correlation isdependent on the activity level of the star. The Na i lines correlatevery well with the SCa II index for the stars with lowactivity levels we used, and are thus a good chromospheric activityproxy for early-M dwarfs. We therefore strongly recommend the use of theNa i activity index because the signal-to-noise ratio in the sodiumlines spectral region is always higher than for the calcium lines.Based on observations made with the HARPS instrument on the ESO 3.6-mtelescope at La Silla Observatory under programme ID 072.C-0488(E).

Effect of magnetic activity saturation in chromospheric flux-flux relationships
We present a homogeneous study of chromospheric and coronal flux-fluxrelationships using a sample of 298 late-type dwarf active stars withspectral types F to M. The chromospheric lines were observedsimultaneously in each star to avoid spread as a result of long-termvariability. Unlike other works, we subtract the basal chromosphericcontribution in all the spectral lines studied. For the first time, wequantify the departure of dMe stars from the general relations. We showthat dK and dKe stars also deviate from the general trend. Studying theflux-colour diagrams, we demonstrate that the stars deviating from thegeneral relations are those with saturated X-ray emission and we showthat these stars also present saturation in the H? line. Usingseveral age spectral indicators, we show that these are younger starsthan those following the general relationships. The non-universality offlux-flux relationships found in this work should be taken into accountwhen converting between fluxes in different chromospheric activityindicators.

Age Determinations of Early-M Type Pre-Main Sequence Stars Using a High-Resolution Near-Infrared Spectroscopic Method
We present a method for determining the age of early-M type pre-mainsequence (PMS) stars based on estimations of the surface gravity. Thesurface gravity was measured using high-resolution near-infrared K-bandspectroscopy. The age of the PMS stars can be determined from thesurface gravity, which correlates with the photospheric contraction. Toestimate the surface gravity while avoiding veiling contamination, wedeveloped a surface gravity indicator using equivalent width ratios(EWRs) of nearby absorption lines. We derived a relationship between theratios of the Sc (22057.8 Å and 22071.3 Å) and Na (22062.4Å and 22089.7 Å) absorption lines and the surface gravity byobserving giants and main-sequence stars. The surface gravities ofearly-M type stars were determined with an accuracy of 0.1 in logg. Theages of target PMS stars were estimated within a factor of 1.5 bycomparing the surface gravity with the evolution model of Baraffe et al.(1998, A&A, 337, 403). The ages of 4 PMS stars were estimated to beolder than indicated by previous age determinations made using thephotometric method. The EWR method allows estimating the age of PMSstars without contaminating the uncertainty of the distance, extinction,and veiling.

Observation and modelling of main-sequence star chromospheres - XV. New constraints on the dynamo mechanisms for dM1 stars
With the help of measures of rotation, radius and metallicity for aselected sample of dM1 stars (with Teff= 3460 ± 60 K),we aim to set new constraints on the dynamo mechanisms.We recover 913 high-resolution spectra for 97 different M1 dwarfs fromthe European Southern Observatory and Observatoire de Haute Provencedata bases. We present 660 new measurements of the Ca II resonance linesand 913 new measurements of the H? line for dM1 stars. We alsocompile other measurements available in the literature. In total, weobtain 2216 measures of the Ca II lines for 113 different dM1 stars.This represents the largest compilation of chromospheric linemeasurements at a single spectral type.We cross-correlate these magnetic activity indicators with variousstellar parameters to set new constraints on the dynamo mechanisms andon the properties of the outer atmosphere.We find a correlation of the Ca II line mean equivalent width with theabsolute magnitude and the metallicity. We correct the Ca II linemeasures from the metallicity effect and find that the surface flux inthe Ca II lines grows roughly as the power of 3.6 of the stellar radius.This corrected flux is a direct measure of magnetic activity at thechromospheric level. We find that the total magnetic activity levelgrows roughly as the power of 5.6 of the stellar radius. This trend isconfirmed by the correlation between the H? line and absolutemagnitude and the H? line luminosity and stellar radius: theH? luminosity grows roughly as the volume of the star for lowactivity dM1 stars and as the power of roughly 5/2 of the stellar radiusfor dM1e stars. The advantage of the H? line is that its formationin not dependent on metallicity.In contrast to the Ca II line, we find no correlation betweenLX and the absolute magnitude. We find that LXroughly correlates with the Ca II luminosity although the correlation isnot very good. This correlation shows that LX grows as thepower of 3/2 of the Ca II luminosity, i.e. the coronal emission growsfaster than the chromospheric emission.We find a correlation between the corrected Ca II line equivalent widthand P/sin i, i.e. the Ca II surface flux grows as the power of -1.5 ofthe rotation period. We also find a correlation between FX,the X-ray surface flux, and P/sin i: FX? (P/sini)-3.7. In other words, the coronal emission is much moredependent on the rotation period than the chromospheric emission.We find that the level of magnetic activity in dM1 stars is moredependent on the stellar radius than on rotation at the chromosphericlevel. We discuss the implications of these results on the models ofstellar dynamos. Based on observations available at Observatoire deHaute Provence and the European Southern Observatory data bases and onHipparcos parallax measurements.

Towards a new full-sky list of radial velocity standard stars
Aims: The calibration of the Radial Velocity Spectrometer (RVS)onboard the ESA Gaia satellite (to be launched in 2012) requires a listof standard stars with a radial velocity (RV) known with an accuracy ofat least 300 m s-1. The IAU commission 30 lists of RVstandard stars are too bright and not dense enough. Methods: Wedescribe the selection criteria due to the RVS constraints for buildingan adequate full-sky list of at least 1000 RV standards from cataloguesalready published in the literature. Results: A preliminary listof 1420 candidate standard stars is built and its properties are shown.An important re-observation programme has been set up in order to insurewithin it the selection of objects with a good stability until the endof the Gaia mission (around 2018). Conclusions: The present listof candidate standards is available at CDS and usable for many otherprojects.Complete Table 2 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/524/A10

A High-Contrast Imaging Survey of SIM Lite Planet Search Targets
With the development of extreme high contrast ground-based adaptiveoptics instruments and space missions aimed at detecting andcharacterizing Jupiter- and terrestrial-mass planets, it is criticalthat each target star be thoroughly vetted to determine whether it is aviable target, given both the instrumental design and scientific goalsof the program. With this in mind, we have conducted a high-contrastimaging survey of mature AFGKM stars with the PALAO/PHARO instrument onthe Palomar 200 inch telescope. The survey reached sensitivitiessufficient to detect brown dwarf companions at separations of >50 AU.The results of this survey will be utilized both by future directimaging projects such as GPI, SPHERE, and P1640 and indirect detectionmissions such as SIM Lite. Out of 84 targets, all but one have noclose-in (0.45-1") companions and 64 (76%) have no stars at all withinthe 25" field of view. The sensitivity contrasts in the Kspassband ranged from 4.5 to 10 for this set of observations. These starswere selected as the best nearby targets for habitable planet searchesbecause of their long-lived habitable zones (>1 billion years). Wereport two stars, GJ 454 and GJ 1020, with previously unpublished propermotion companions. In both cases, the companions are stellar in natureand are most likely M dwarfs based on their absolute magnitudes andcolors. Based on our mass sensitivities and level of completeness, wecan place an upper limit of ˜17% on the presence of brown dwarfcompanions with masses >40 MJ at separations of >1". Wealso discuss the importance of including statistics on those stars withno detected companions in their field of view for the sake of futurecompanion searches and an overall understanding of the population oflow-mass objects around nearby stars.

A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups
Context. Nearby late-type stars are excellent targets for seeking youngobjects in stellar associations and moving groups. The origin of thesestructures is still misunderstood, and lists of moving group membersoften change with time and also from author to author. Most members ofthese groups have been identified by means of kinematic criteria,leading to an important contamination of previous lists by old fieldstars. Aims: We attempt to identify unambiguous moving groupmembers among a sample of nearby-late type stars by studying theirkinematics, lithium abundance, chromospheric activity, and otherage-related properties. Methods: High-resolution echelle spectra(R ~ 57 000) of a sample of nearby late-type stars are used to deriveaccurate radial velocities that are combined with the precise Hipparcosparallaxes and proper motions to compute galactic-spatial velocitycomponents. Stars are classified as possible members of the classicalmoving groups according to their kinematics. The spectra are also usedto study several age-related properties for young late-type stars, i.e.,the equivalent width of the lithium Li i 6707.8 Å line or theR'HK index. Additional information like X-ray fluxes from theROSAT All-Sky Survey or the presence of debris discs is also taken intoaccount. The different age estimators are compared and the moving groupmembership of the kinematically selected candidates are discussed. Results: From a total list of 405 nearby stars, 102 have beenclassified as moving group candidates according to their kinematics.i.e., only ~25.2% of the sample. The number reduces when age estimatesare considered, and only 26 moving group candidates (25.5% of the 102candidates) have ages in agreement with the star having the same age asan MG member.Based on observations collected at the Centro Astronómico HispanoAlemán (CAHA) at Calar Alto, operated jointly by the Max-PlanckInstitut für Astronomie and the Instituto de Astrofísica deAndalucía (CSIC) and observations made with the ItalianTelescopio Nazionale Galileo (TNG) operated on the island of La Palma bythe Fundación Galileo Galilei of the INAF (Istituto Nazionale diAstrofisica) at the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canarias.Appendices and Tables 1,5-15 are available in electronic form at http://www.aanda.orgTable 1 is alsoavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/521/A12

Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars
We have measured v sin i for a selected sample of dM1-typestars. We give 114 measurements of v sin i for 88 different stars, andsix upper detection limits. These are the first measurements of v sin ifor most of the stars studied here. This represents the largest sampleof v sin i measurements for M dwarfs at a given spectral type. For thesemeasurements, we used four different spectrographs: HARPS (ESO), SOPHIE(OHP), ÉLODIE (OHP) and UVES (ESO). Two of these spectrographs(HARPS and SOPHIE) are particularly stable in wavelength since they weredesigned for exoplanet searches.We measured v sin i down to an accuracy of 0.3kms-1 for thehighest resolution spectrographs and a detection limit of about1kms-1. We show that this unprecedented accuracy for M dwarfsin our data set is possible because all the targets have the samespectral type. This is an advantage and it facilitates the determinationof the narrowest line profiles for v sin i ~ 0. Although it is possibleto derive the zero-point profiles using several spectral types at atime. These values were combined with other measurements taken from theliterature. The total sample represents detected rotation for 100 stars(10 dM1e and 90 dM1 stars). We confirm our finding of Paper VII that thedistribution of the projected rotation period is bimodal for dM1 starswith a much larger sample, i.e. there are two groups of stars: the fastrotators with P/sin i ~ 4.5d and the slow rotators with P/sin i ~ 14.4d.There is a gap between these two groups. We find that the distributionof stars as a function of P/sin i has two very abrupt cuts, below 10dand above 18d. There are very few stars observed out of this range10-18d. We also observe that the distribution increases slightly from 18to 10d.We find that the M1 subdwarfs (very low metallicity dwarfs) rotate withan average period of P/sin i ~ 7.2d, which is about twice faster as themain group of normal M1 dwarfs. We also find a correlation for P/sin ito decrease with stellar radius among dM1e stars. Such a trend is alsoobserved in dM1 stars.We also derive metallicity and radius for all our target stars using thesame method as in Paper VII. We notably found that 11 of our targetstars are subdwarfs with metallicities below -0.5dex.Based on observations available at Observatoire de Haute Provence andthe European Southern Observatory data bases and on Hipparcos parallaxmeasurements.E-mail: eric_houdebine@yahoo.fr

Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter
Context. Chromospheric activity produces both photometric andspectroscopic variations that can be mistaken as planets. Large spotscrossing the stellar disc can produce planet-like periodic variations inthe light curve of a star. These spots clearly affect the spectral lineprofiles, and their perturbations alter the line centroids creating aradial velocity jitter that might “contaminate” thevariations induced by a planet. Precise chromospheric activitymeasurements are needed to estimate the activity-induced noise thatshould be expected for a given star. Aims: We obtain precisechromospheric activity measurements and projected rotational velocitiesfor nearby (d ? 25 pc) cool (spectral types F to K) stars, toestimate their expected activity-related jitter. As a complementaryobjective, we attempt to obtain relationships between fluxes indifferent activity indicator lines, that permit a transformation oftraditional activity indicators, i.e., Ca ii H & K lines, to othersthat hold noteworthy advantages. Methods: We used high resolution(~50 000) echelle optical spectra. Standard data reduction was performedusing the IRAF echelle package. To determine the chromospheric emissionof the stars in the sample, we used the spectral subtraction technique.We measured the equivalent widths of the chromospheric emission lines inthe subtracted spectrum and transformed them into fluxes by applyingempirical equivalent width and flux relationships. Rotational velocitieswere determined using the cross-correlation technique. To inferactivity-related radial velocity (RV) jitter, we used empiricalrelationships between this jitter and the R'_HK index. Results:We measured chromospheric activity, as given by different indicatorsthroughout the optical spectra, and projected rotational velocities for371 nearby cool stars. We have built empirical relationships among themost important chromospheric emission lines. Finally, we used themeasured chromospheric activity to estimate the expected RV jitter forthe active stars in the sample.Based on observations made with the 2.2 m telescope at the CentroAstronómico Hispano Alemán (CAHA) at Calar Alto (Spain)and the Telescopio Nazionale Galileo (TNG) operated on the island of LaPalma by the Istituto Nazionale de Astrofisica Italiano (INAF), in theSpanish Observatorio del Roque de los Muchachos. This research has beensupported by the Programa de Acceso a InfraestructurasCientíficas y Tecnológicas Singulares (ICTS).Tables A1 toA4 are only available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A79

UBV(RI)C JHK observations of Hipparcos-selected nearby stars
We present homogeneous, standardized UBV(RI)C photometry forover 700 nearby stars selected on the basis of Hipparcos parallaxes.Additionally, we list JHK photometry for about half of these stars, aswell as L photometry for 86 of the brightest. A number of stars withpeculiar colours or anomalous locations in various colour-magnitudediagrams are discussed.

Rotation and Magnetic Activity in a Sample of M-Dwarfs
We have analyzed the rotational broadening and chromospheric activity ina sample of 123 M-dwarfs, using spectra taken at the W.M. KeckObservatory as part of the California Planet Search program. We findthat only seven of these stars are rotating more rapidly than ourdetection threshold of v sin i ? 2.5 km s-1.Rotation appears to be more common in stars later than M3 than in theM0-M2.5 mass range: we estimate that less than 10% of early-M stars aredetectably rotating, whereas roughly a third of those later than M4 showsigns of rotation. These findings lend support to the view thatrotational braking becomes less effective in fully convective stars. Bymeasuring the equivalent widths of the Ca II H and K lines for the starsin our sample, and converting these to approximate L Ca/Lbol measurements, we also provide constraints on theconnection between rotation and magnetic activity. Measurable rotationis a sufficient, but not necessary condition for activity in our sample:all the detectable rotators show strong Ca II emission, but so too do asmall number of non-rotating stars, which we presume may lie at highinclination angles relative to our line of sight. Our data areconsistent with a "saturation-type" rotation-activity relationship, withactivity roughly independent of rotation above a threshold velocity ofless than 6 km s-1. We also find weak evidence for a"gap" in L Ca/L bol between a highly activepopulation of stars, which typically are detected as rotators, andanother much less active group.

Rotational Velocities for M Dwarfs
We present spectroscopic rotation velocities (v sin i) for 56 M dwarfstars using high-resolution Hobby-Eberly Telescope High ResolutionSpectrograph red spectroscopy. In addition, we have also determinedphotometric effective temperatures, masses, and metallicities ([Fe/H])for some stars observed here and in the literature where we couldacquire accurate parallax measurements and relevant photometry. We haveincreased the number of known v sin i values for mid M stars by around80% and can confirm a weakly increasing rotation velocity withdecreasing effective temperature. Our sample of v sin is peak at lowvelocities (~3 km s-1). We find a change in therotational velocity distribution between early M and late M stars, whichis likely due to the changing field topology between partially and fullyconvective stars. There is also a possible further change in therotational distribution toward the late M dwarfs where dust begins toplay a role in the stellar atmospheres. We also link v sin i to age andshow how it can be used to provide mid-M star age limits. When allliterature velocities for M dwarfs are added to our sample, there are198 with v sin i <= 10 km s-1 and 124 in themid-to-late M star regime (M3.0-M9.5) where measuring precision opticalradial velocities is difficult. In addition, we also search the spectrafor any significant Hα emission or absorption. Forty three percentwere found to exhibit such emission and could represent young, activeobjects with high levels of radial-velocity noise. We acquired twoepochs of spectra for the star GJ1253 spread by almost one month and theHα profile changed from showing no clear signs of emission, toexhibiting a clear emission peak. Four stars in our sample appear to below-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129and Gl802 exhibiting double Hα emission features. The tablespresented here will aid any future M star planet search target selectionto extract stars with low v sin i.Based on observations obtained with the Hobby-Eberly Telescope, which isa joint project of the University of Texas at Austin, the PennsylvaniaState University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen.

XID II: Statistical Cross-Association of ROSAT Bright Source Catalog X-ray Sources with 2MASS Point Source Catalog Near-Infrared Sources
The 18,806 ROSAT All Sky Survey Bright Source Catalog (RASS/BSC) X-raysources are quantitatively cross-associated with near-infrared (NIR)sources from the Two Micron All Sky Survey Point Source Catalog(2MASS/PSC). An association catalog is presented, listing the mostlikely counterpart for each RASS/BSC source, the probability Pid that the NIR source and X-ray source are uniquelyassociated, and the probability P no-id that none of the2MASS/PSC sources are associated with the X-ray source. The catalogincludes 3853 high quality (P id>0.98) X-ray-NIR matches,2280 medium quality (0.98 >= P id>0.9) matches, and4153 low quality (0.9 >= P id>0.5) matches. Of the highquality matches, 1418 are associations that are not listed in the SIMBADdatabase, and for which no high quality match with a USNO-A2 opticalsource was presented for the RASS/BSC source in previous work. Thepresent work offers a significant number of new associations withRASS/BSC objects that will require optical/NIR spectroscopy forclassification. For example, of the 6133 P id>0.92MASS/PSC counterparts presented in the association catalog, 2411 haveno classification listed in the SIMBAD database. These 2MASS/PSC sourceswill likely include scientifically useful examples of known sourceclasses of X-ray emitters (white dwarfs, coronally active stars, activegalactic nuclei), but may also contain previously unknown sourceclasses. It is determined that all coronally active stars in theRASS/BSC should have a counterpart in the 2MASS/PSC, and that the uniqueassociation of these RASS/BSC sources with their NIR counterparts thusis confusion limited.

Radio Interferometric Planet Search. I. First Constraints On Planetary Companions For Nearby, Low-Mass Stars From Radio Astrometry
Radio astrometry of nearby, low-mass stars has the potential to be apowerful tool for the discovery and characterization of planetarycompanions. We present a Very Large Array survey of 172 active M dwarfsat distances of less than 10 pc. Twenty-nine stars were detectedwith flux densities greater than 100 μJy. We observed seven ofthese stars with the Very Long Baseline Array at milliarcsecondresolution in three separate epochs. With a detection threshold of500 μJy in images of sensitivity 1σ ~ 100 μJy, wedetected three stars three times (GJ 65B, GJ 896A, GJ 4247), one startwice (GJ 285), and one star once (GJ 803). Two stars were undetected(GJ 412B and GJ 1224). For the four stars detected in multiple epochs,residuals from the optically determined apparent motions have anroot-mean-square deviation of ~0.2 milliarcseconds, consistent withstatistical noise limits. Combined with previous optical astrometry,these residuals provide acceleration upper limits that allow us toexclude planetary companions more massive than 3-6 M Jup at adistance of ~1 AU with a 99% confidence level.

RS CVn Stars Among Variables with Possible CW Classification in the ASAS-3 Survey
We present a list of 109 probable RS CVn variables among stars in theASAS-3 catalog with Population II Cepheid classification as the main oneor an alternative one. These stars are identified with X-ray sources andhave light curves (from ASAS-3 data) in no contradiction with thesuggested RS CVn classification.

Lithium Depletion of Nearby Young Stellar Associations
We estimate cluster ages from lithium depletion in fivepre-main-sequence groups found within 100 pc of the Sun: the TW Hydraeassociation, η Chamaeleontis cluster, β Pictoris moving group,Tucanae-Horologium association, and AB Doradus moving group. Wedetermine surface gravities, effective temperatures, and lithiumabundances for over 900 spectra through least-squares fitting tomodel-atmosphere spectra. For each group, we compare the dependence oflithium abundance on temperature with isochrones from pre-main-sequenceevolutionary tracks to obtain model-dependent ages. We find that theη Cha cluster and the TW Hydrae association are the youngest, withages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the βPic moving group at 21+/-9 Myr, the Tucanae-Horologium association at27+/-11 Myr, and the AB Dor moving group at an age of at least 45 Myr(whereby we can only set a lower limit, since the models-unlike realstars-do not show much lithium depletion beyond this age). Here theordering is robust, but the precise ages depend on our choice of bothatmospheric and evolutionary models. As a result, while our ages areconsistent with estimates based on Hertzsprung-Russell isochrone fittingand dynamical expansion, they are not yet more precise. Our observationsdo show that with improved models, much stronger constraints should befeasible, as the intrinsic uncertainties, as measured from the scatterbetween measurements from different spectra of the same star, are verylow: around 10 K in effective temperature, 0.05 dex in surface gravity,and 0.03 dex in lithium abundance.

Observation and modelling of main-sequence stellar chromospheres - VII. Rotation and metallicity of dM1 stars
We have measured v sini and metallicity from high-resolutionspectroscopic observations of a selected sample of dM1-type stars.To measure v sini, we first selected three template stars known fortheir slow rotation or their very low activity levels and thencross-correlated their spectra with those of our target stars. Theexcess broadening of the cross-correlation peaks gives v sini. Formetallicity, we compiled all available measurements from the literatureand correlated them with the stellar radius. Provided the parallax isknown, this new method allows us to derive metallicities for all ourtarget stars.We measured v sini to an accuracy of 2 kms-1. These valueswere combined with other measurements taken from the literature. We havedetected rotation in seven dM1e stars and 11 dM1 stars and upper limitsfor 20 other dM1 stars. Our results show that the distribution of therotation period may be bimodal for dM1 stars, i.e. there are two groupsof stars: the fast rotators with Prot ~ 6 d and the slowrotators with Prot ~ 24 d. There is a gap between these twogroups.We obtained a correlation between metallicity and stellar radius whichallows us to derive metallicities for all stars in our sample and moregenerally for all dM1 stars with [M/H] in the range -1.5 to 0.5 dex,with a reasonable accuracy. We compare this correlation to models andfind a significant disagreement in radii. However, the observed shape ofthe correlation is globally reproduced by the models. We derive themetallicity for 87 M1 dwarfs and subdwarfs.Based on observations collected at Observatoire de Haute Provence andthe European Southern Observatory and on Hipparcos parallaxmeasurements.E-mail: eric_houdebine@yahoo.fr

M dwarfs: effective temperatures, radii and metallicities
We empirically determine effective temperatures and bolometricluminosities for a large sample of nearby M dwarfs, for which highaccuracy optical and infrared photometry is available. We introduce anew technique which exploits the flux ratio in different bands as aproxy of both effective temperature and metallicity. Our temperaturescale for late-type dwarfs extends well below 3000K (almost to the browndwarf limit) and is supported by interferometric angular diametermeasurements above 3000K. Our metallicities are in excellent agreement(usually within 0.2dex) with recent determinations via independenttechniques. A subsample of cool M dwarfs with metallicity estimatesbased on hotter Hipparcos common proper motion companions indicates ourmetallicities are also reliable below 3000K, a temperature rangeunexplored until now. The high quality of our data allows us to identifya striking feature in the bolometric luminosity versus temperatureplane, around the transition from K to M dwarfs. We have compared oursample of stars with theoretical models and conclude that thistransition is due to an increase in the radii of the M dwarfs, a featurewhich is not reproduced by theoretical models.

The effect of activity on stellar temperatures and radii
Context: Recent analyses of low-mass eclipsing binary stars haveunveiled a significant disagreement between the observations andpredictions of stellar structure models. Results show that theoreticalmodels underestimate the radii and overestimate the effectivetemperatures of low-mass stars but yield luminosities that accord withobservations. A hypothesis based upon the effects of stellar activitywas put forward to explain the discrepancies. Aims: In this paper westudy the existence of the same trend in single active stars and providea consistent scenario to explain systematic differences between activeand inactive stars in the H-R diagram reported earlier. Methods: Theanalysis is done using single field stars of spectral types late-K and Mand computing their bolometric magnitudes and temperatures throughinfrared colours and spectral indices. The properties of the stars insamples of active and inactive stars are compared statistically toreveal systematic differences. Results: After accounting for a numberof possible bias effects, active stars are shown to be cooler thaninactive stars of similar luminosity therefore implying a larger radiusas well, in proportions that are in excellent agreement with those foundfrom eclipsing binaries. Conclusions: The present results generalisethe existence of strong radius and temperature dependences on stellaractivity to the entire population of low-mass stars, regardless of theirmembership in close binary systems.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/478/507

Further observations of Hipparcos red stars and standards for UBV(RI)C photometry
We present homogeneous and standardized UBV(RI)C JHKphotometry for over 100 M stars selected from an earlier paper on thebasis of apparent photometric constancy. L photometry has been obtainedfor stars brighter than about L = 6. Most of the stars have asubstantial number of UBV(RI)C observations and, it is hoped,will prove useful as red supplementary standards. Additionally, we listJHK photometry for nearly 300 Hipparcos red stars not selected asstandards, as well as L photometry for the brightest stars.

A Surprising Reversal of Temperatures in the Brown Dwarf Eclipsing Binary 2MASS J05352184-0546085
The newly discovered brown dwarf eclipsing binary 2MASSJ05352184-0546085 provides a unique laboratory for testing thepredictions of theoretical models of brown dwarf formation andevolution. The finding that the lower mass brown dwarf in this system ishotter than its higher mass companion represents a challenge to browndwarf evolutionary models, none of which predict this behavior. Here wepresent updated determinations of the basic physical properties of2M0535-05, bolstering the surprising reversal of temperatures with massin this system. We compare these measurements with widely used browndwarf evolutionary tracks, and find that the temperature reversal can beexplained by some models if the components of 2M0535-05 are mildlynon-coeval, possibly consistent with dynamical simulations of browndwarf formation. Alternatively, a strong magnetic field on the highermass brown dwarf might explain its anomalously low surface temperature,consistent with emerging evidence that convection is suppressed inmagnetically active, low-mass stars. Finally, we discuss futureobservational and theoretical work needed to further characterize andunderstand this benchmark system.

The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation
Context: The rotation-activity connection explains stellar activity interms of rotation and convective overturn time. It is well establishedin stars of spectral types F-K as well as in M-type stars of youngclusters, in which rotation is still very rapid even among M-dwarfs. Therotation-activity connection is not established in field M-dwarfs,because they rotate very slowly, and detecting rotation periods orrotational line broadening is a challenge. In field M-dwarfs, saturationsets in below v_rot = 5 km s-1, hence they are expected topopulate the non-saturated part of the rotation-activity connection. Aims: This work for the first time shows intrinsically resolved spectrallines of slowly rotating M-dwarfs and makes a first comparison toestimates of convective velocities. By measuring rotation velocities ina sample of mostly inactive M-dwarfs, the unsaturated part of therotation-activity connection is followed into the regime of very lowactivity. Methods: Spectra of ten M-dwarfs are taken at a resolvingpower of R = 200000 at the CES in the near infrared region wheremolecular FeH has strong absorption bands. The intrinsically very narrowlines are compared to model calculations of convective flows, androtational broadening is measured. Results: In one star, an upper limitof v sin i = 1 km s-1 was found, significant rotation wasdetected in the other nine objects. All inactive stars show rotationbelow or equal to 2 km s-1. In the two active stars AD Leoand YZ CMi, rotation velocities are found to be 40-50% below the resultsfrom earlier studies. Conclusions: The rotation activity connectionholds in field early-M stars, too. Activity and rotation velocities ofthe sample stars are well in agreement with the relation found inearlier and younger stars. The intrinsic absorption profiles ofmolecular FeH lines are consistent with calculations from atomic Felines. Investigation of FeH line profiles is a very promising tool tomeasure convection patterns at the surfaces of M-stars.Based on observationscarried out at the European Southern Observatory, La Silla,PID 076.D-0092.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Identification of New M Dwarfs in the Solar Neighborhood
We present the results from a spectroscopic study of 1080 nearby activeM dwarfs, selected by correlating the Two Micron All Sky Survey andROSAT catalogs. We have derived the spectral types and estimateddistances for all of our stars. The spectral types range between K5 andM6. Nearly half of our stars lie within 50 pc. We have measured theequivalent width of the Hα emission line. Our targets show anincrease in chromospheric activity from early to midspectral types, witha peak in activity around M5. Using the count rate and hardness ratiosobtained from the ROSAT catalog, we have derived the X-ray luminosities.Our stars display a ``saturation-type'' relation between thechromospheric and coronal activity. The relation is such thatlogLX/Lbol remains ``saturated'' at a value ofapproximately -3 for varying Hα equivalent width. We have found568 matches in the USNO-B catalog and have derived the tangentialvelocities for these stars. There is a slight trend of decreasingchromospheric activity with age, such that the stars with highervtan have lower Hα equivalent widths. The coronalemission, however, remains saturated at a value oflogLX/Lbol~-3 for varying tangential velocities,suggesting that the coronal activity remains saturated with age. We donot find any break in the saturation-type relation at the spectral typeat which stars become fully convective (~M3.5). Most of the stars in oursample show more coronal emission than the dMe stars in the Hyades andPraesepe and have vtan<40 km s-1, suggesting ayoung population.

Ca II H and K Chromospheric Emission Lines in Late-K and M Dwarfs
We have measured the profiles of the Ca II H and K chromosphericemission lines in 147 main-sequence stars of spectral type M5-K7 (masses0.30-0.55 Msolar) using multiple high-resolution spectraobtained during 6 years with the HIRES spectrometer on the Keck Itelescope. Remarkably, the average FWHM, equivalent widths, and lineluminosities of Ca II H and K increase by a factor of 3 with increasingstellar mass over this small range of stellar masses. We fit the Ca II Hand K lines with a double-Gaussian model to represent both thechromospheric emission and the non-LTE central absorption. Most of thesample stars display a central absorption that is typically redshiftedby ~0.1 km s-1 relative to the emission. This implies thatthe higher level, lower density chromospheric material has a smalleroutward velocity (or higher inward velocity) by 0.1 km s-1than the lower level material in the chromosphere, but the nature ofthis velocity gradient remains unknown. The FWHM of the Ca II H and Kemission lines increase with stellar luminosity, reminiscent of theWilson-Bappu effect in FGK-type stars. Both the equivalent widths andFWHM exhibit modest temporal variability in individual stars. At a givenvalue of MV, stars exhibit a spread in both the equivalentwidth and FWHM of Ca II H and K, due both to a spread in fundamentalstellar parameters, including rotation rate, age, and possiblymetallicity, and to the spread in stellar mass at a given MV.The K line is consistently wider than the H line, as expected, and itscentral absorption is more redshifted, indicating that the H and K linesform at slightly different heights in the chromosphere where thevelocities are slightly different. The equivalent width of Hαcorrelates with Ca II H and K only for stars having Ca II equivalentwidths above ~2 Å, suggesting the existence of a magneticthreshold above which the lower and upper chromospheres become thermallycoupled.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.

Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence
We obtained high resolution ELODIE and CORALIE spectra for bothcomponents of 20 wide visual binaries composed of an F-, G- or K-dwarfprimary and an M-dwarf secondary. We analyse the well-understood spectraof the primaries to determine metallicities ([Fe/H]) for these 20systems, and hence for their M dwarf components. We pool thesemetallicities with determinations from the literature to obtain aprecise (±0.2 dex) photometric calibration of M dwarfmetallicities. This calibration represents a breakthrough in a fieldwhere discussions have had to remain largely qualitative, and it helpsus demonstrate that metallicity explains most of the large dispersion inthe empirical V-band mass-luminosity relation. We examine themetallicity of the two known M-dwarf planet-host stars, Gl876 (+0.02 dex) and Gl 436 (-0.03 dex), inthe context of preferential planet formation around metal-rich stars. Wefinally determine the metallicity of the 47 brightest single M dwarfs ina volume-limited sample, and compare the metallicity distributions ofsolar-type and M-dwarf stars in the solar neighbourhood.

The spectroscopic characteristics of intermediate-aged pre-main-sequence stars: the η Chamaeleontis cluster
We present a study of calibrated low-resolution spectra of the 18 knownprimaries of the ~9-Myr-old η Chamaeleontis (η Cha)pre-main-sequence (PMS) star cluster. Using synthetic broad-band coloursand narrow-band continuum-sensitive, temperature-sensitive andgravity-sensitive indices derived from the spectra, we compare the ηCha stars to standard dwarfs. We find that the VRI colours of the PMSstars are indistinguishable from those of main-sequence stars, but thata B-band excess attaining ~0.2 mag for late-M cluster stars is present,which might be an indicator of gravity, metallicity and/or activitydifferences between the two samples of stars. The narrow-band spectralindices for the η Cha stars possibly indicate higher metallicity andstrongly indicate lower surface gravity than the dwarf indices,consistent with the elevated location of the cluster in theHertzsprung-Russell evolutionary diagram. Using the derived syntheticcolours and indices, we adopt spectral types for the late-type η Chastars. We then produce a table of absolute optical magnitudes andcolours representing the cluster isochrone for comparison with PMSevolutionary models. From our results we also conclude that the ηCha stars are unreddened, consistent with the group being a sample ofolder PMS stars distant from obscuring molecular clouds, except for theA1 member HD 75505 for which we confirm AV= 0.4 mag likelydue to the presence of circumstellar material.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Sextant
Right ascension:10h12m17.67s
Declination:-03°44'44.4"
Apparent magnitude:9.33
Distance:7.813 parsecs
Proper motion RA:-150.7
Proper motion Dec:-245.2
B-T magnitude:11.012
V-T magnitude:9.469

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 4907-704-1
USNO-A2.0USNO-A2 0825-07125087
HIPHIP 49986

→ Request more catalogs and designations from VizieR