Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

IC 2146


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Distances to Populous Clusters in the Large Magellanic Cloud via the K-band Luminosity of the Red Clump
We present results from a study of the distances and distribution of asample of intermediate-age clusters in the Large Magellanic Cloud (LMC).Using deep near-infrared photometry obtained with ISPI on the CTIO 4 m,we have measured the apparent K-band magnitude of the corehelium-burning red clump stars in 17 LMC clusters. We combine clusterages and metallicities with the work of Grocholski and Sarajedini topredict each cluster's absolute K-band red-clump magnitude and therebycalculate absolute cluster distances. An analysis of these data showsthat the cluster distribution is in good agreement with the thick,inclined-disk geometry of the LMC, as defined by its field stars. Wealso find that the old globular clusters follow the same distribution,suggesting that the LMC's disk formed at about the same time as theglobular clusters, ~13 Gyr ago. Finally, we have used our clusterdistances in conjunction with the disk geometry to calculate thedistance to the LMC center, for which we find(m-M)0=18.40+/-0.04 (random)+/-0.08 (systematic), orD0=47.9+/-0.9+/-1.8 kpc.

Ca II Triplet Spectroscopy of Large Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Populous Clusters
Using the FORS2 instrument on the Very Large Telescope, we have obtainednear-infrared spectra for more than 200 stars in 28 populous LMCclusters. This cluster sample spans a large range of ages (~1-13 Gyr)and metallicities (-0.3>~[Fe/H]>~-2.0) and has good areal coverageof the LMC disk. The strong absorption lines of the Ca II triplet areused to derive cluster radial velocities and abundances. We determinemean cluster velocities to typically 1.6 km s-1 and meanmetallicities to 0.04 dex (random error). For eight of these clusters,we report the first spectroscopically determined metallicities based onindividual cluster stars, and six of these eight have no publishedradial velocity measurements. Combining our data with archival HubbleSpace Telescope WFPC2 photometry, we find that the newly measuredcluster, NGC 1718, is one of the most metal-poor ([Fe/H]~-0.80)intermediate-age (~2 Gyr) inner disk clusters in the LMC. Similar towhat was found by previous authors, this cluster sample has radialvelocities consistent with that of a single rotating disk system, withno indication that the newly reported clusters exhibit halo kinematics.In addition, our findings confirm previous results that show that theLMC lacks the metallicity gradient typically seen in nonbarred spiralgalaxies, suggesting that the bar is driving the mixing of stellarpopulations in the LMC. However, in contrast to previous work, we findthat the higher metallicity clusters (>~-1.0 dex) in our sample showa very tight distribution (mean [Fe/H]=-0.48, σ=0.09), with notail toward solar metallicities. The cluster distribution is similar towhat has been found for red giant stars in the bar, which indicates thatthe bar and the intermediate-age clusters have similar star formationhistories. This is in good agreement with recent theoretical models thatsuggest the bar and intermediate-age clusters formed as a result of aclose encounter with the SMC ~4 Gyr ago.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Magellanic Clouds stellar clusters. II. New B,V CM diagrams for 6 LMC and 10 SMC clusters
We present new CCD photometry for 6 LMC and 10 SMC stellar clusterstaken at the ESO 1.54-m Danish Telescope in La Silla, to extend aprevious investigation on Magellanic Clouds clusters based on HSTsnapshots. Thanks to the much larger area covered by the Danishdetector, we investigate the spatial distribution of cluster stars,giving V, (B-V) CM diagrams for both clusters and surrounding fields.Evidence of a complex history of star formation in the Clouds isoutlined, showing that old field populations in both Clouds havemetallicities much lower than normally adopted for them (Z = 0.008 and Z= 0.004 for LMC and SMC respectively), with SMC field stars more metalpoor than in the LMC. Observational data concerning the red clump offield stars in both Clouds are briefly discussed. Based on observationscarried out at the European Southern Observatory, La Silla, Chile.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Spectroscopy of giants in LMC clusters. II - Kinematics of the cluster sample
Velocities for 83 star clusters in the LMC are analyzed, based onindividual stellar velocities measured at the Calcium triplet. One-halfof the clusters are objects in the outer parts of the LMC which had noprevious velocity determinations. Published velocities for intermediateand old clusters are shown to have had systematic errors. These newvelocities with various rotation curve analyses of the LMC, and testaspects of the twisted disk model proposed by Freeman et al. (1983).When the transverse motion of the LMC is taken into account, a singlerotating disk solution fits the old and intermediate-aged clusters andother tracers (i.e., there is no need for an additional 'tilted disk'system).

Spectroscopy of giants in LMC clusters. I - Velocities, abundances, and the age-metallicity relation
Velocities and equivalent widths are presented for a large sample of LMCclusters. The calcium abundance is found to be a sensitive abundanceindicator over a very wide range of (Fe/H) between 0.0 and -2.2. Theage-metallicity relation is constructed for the inner and outer parts ofthe LMC. This relationsip can be characterized by a simple one-zoneenrichment model. The abundances for the inner and outer clusters at anage of 2 Gyr are nearly identical, so that little radial abundancegradient is evident in the cluster system.

The cluster system of the Large Magellanic Cloud
A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.

A catalog of LMC star clusters outside the Hodge-Wright atlas
The paper presents a catalog of 156 clusters outside the boundaries ofthe Hodge and Wright (1967) LMC atlas. The catalog contains coordinatesaccurate to 1-2 arcsec, offsets from the edge of the appropriate SRCJplates, cross references to previous identifications, and finding chartsof the brighter clusters. As defined by the clusters, the Hodge andWright atlas is found to represent the extent of the LMC to the west,and reasonably well to the east. To the north and the south, the clustersystem extends substantially beyond the boundaries of the atlas. Thesouthern clusters delineate a portion of the 'spiral arm' noted by deVaucouleurs (1955).

Distribution of spectral types in the LMC clusters
The distribution of spectral types in 42 LMC globular star clusterscovering all evolutionary ages was determined using objective prismspectra taken with the 1.2-m U.K. Schmidt Telescope in Australia. Thederived spectral type distributions show that the clusters can bedivided into five age categories from about 10 to the 7th to more than10 to the 9th yr. Several clusters were found to contain carbon starswith C/M ratios ranging from 0.07 to 0.4. These ratios were comparedwith those found for the SMC clusters and the Milky Way. It was foundthat the stars of the LMC exhibit a smaller range of C/M ratios than inthe SMC, but larger than in the Galaxy, thus providing an additionaltest of the theoretical models predicting a correlation between the C/Mratio and metal content. It was also found that the majority of youngclusters were embedded in older fields, while the intrmediate clusterswere embeded in younger fields, and the remote old clusters wereembedded in a stellar content of similar age.

Ages and metallicities of LMC and SMC red clusters through H-beta and G band photometry
Narrow band integrated photometry of the H-beta and G band absorptionfeatures for 41 LMC and 10 SMC red star clusters is presented. Anage-metallicity calibration is provided for the color-color diagram. SWBtypes between IV and VII are derived for 23 unclassified clusters, andtheir distribution in the age versus metallicity plane is discussed. Astudy of chemical evolution of the Magellanic Clouds has shown that theLMC presents a steeper chemical enrichment slope. An intrinsicmetallicity dispersion is found in the LMC chemical evolution,indicating that the gas has been inhomogeneous at any time, with localenrichment prevailing over a global one. One zone model describes theevolution of both clouds, the efficiency of star cluster formation beinglarger in the LMC. The LMC presents a burst of star cluster formation att = 4.5 x 10 to the 9th yr. New B - V data for fainter SMC clusters arealso presented, providing an essentially complete color histogram forclusters with globular cluster appearance.

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

The extended giant branches of intermediate age globular clusters in the Magellanic Clouds. III
The latest findings of a photographic near-IR survey of the red globularclusters in the Magellanic Clouds for upper asymptotic giant branchstars are reported. New IR (JHK) photometry for some 80 cluster stars isalso presented. These results combined with earlier data are used toderive age estimates for a nearly complete sample of Cloud clustershaving an integrated absolute magnitude less than -7. The agedistribution of clusters in the Large Cloud, which shows a pronouncedpeak at 4 Gyr, may be different from that in the Small Cloud. This peakcould be a result of luminosity evolution of clusters, however, and aconstant rate of cluster formation in the Large Cloud cannot be ruledout. A cluster age-metallicity relation clearly exists in the LargeCloud, althoug the degree of scatter about this relation is somewhatuncertain and may be significant.

A Catalogue of Clusters in The LMC
Not Available

A catalogue of clusters in the outer parts of the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/abs/1963MNRAS.127...31L

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Octans
Right ascension:05h37m46.00s
Declination:-74°47'00.0"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
ICIC 2146

→ Request more catalogs and designations from VizieR