תוכן
תמונות
הוסף תמונה שלך
DSS Images Other Images
מאמרים קשורים
Search for associations containing young stars (SACY). III. Ages and Li abundances Context: Our study is a follow-up of the SACY project, an extended highspectral resolution survey of more than two thousand opticalcounterparts to X-ray sources in the southern hemisphere targeted tosearch for young nearby association. Nine associations have either beennewly identified, or have had their member list revised. Groupsbelonging to the Sco-Cen-Oph complex are not considered in the presentstudy. Aims: These nine associations, with ages of between about 6Myr and 70 Myr, form an excellent sample to study the Li depletion inthe pre-main sequence (PMS) evolution. In the present paper, weinvestigate the use of Li abundances as an independent clock toconstrain the PMS evolution. Methods: Using our measurements ofthe equivalent widths of the Li resonance line and assuming fixedmetallicities and microturbulence, we calculated the LTE Li abundancesfor 376 members of various young associations. In addition, weconsidered the effects of their projected stellar rotation.Results: We present the Li depletion as a function of age in the firsthundred million years for the first time for the most extended sample ofLi abundances in young stellar associations. Conclusions: A clearLi depletion can be measured in the temperature range from 5000 K to3500 K for the age span covered by the nine associations studied in thispaper. The age sequence based on the Li-clock agrees well with theisochronal ages, the ?Cha association being the only possibleexception. The lithium depletion patterns for the associations presentedhere resemble those of the young open clusters with similar ages,strengthening the notion that the members proposed for these loose youngassociations have indeed a common physical origin. The observed scatterin the Li abundances hampers the use of Li in determining reliable agesfor individual stars. For velocities above 20 km s-1,rotation seems to play an important role in inhibiting the Li depletion.Based on observations collected at the ESO - La Silla and at theLNA-OPD.Tables [see full textsee full text]-[see full textsee full text] areonly available in electronic form at http://www.aanda.org
| Explorations Beyond the Snow Line: Spitzer/IRS Spectra of Debris Disks Around Solar-type Stars We have observed 152 nearby solar-type stars with the InfraredSpectrometer (IRS) on the Spitzer Space Telescope. Including stars thatmet our criteria but were observed in other surveys, we get an overallsuccess rate for finding excesses in the long-wavelength IRS band (30-34μm) of 11.8% ± 2.4%. The success rate for excesses in theshort-wavelength band (8.5-12 μm) is ~1% including sources from othersurveys. For stars with no excess at 8.5-12 μm, the IRS data set3σ limits of around 1000 times the level of zodiacal emissionpresent in our solar system, while at 30-34 μm data set limits ofaround 100 times the level of our solar system. Two stars (HD 40136 andHD 10647) show weak evidence for spectral features; the excess emissionin the other systems is featureless. If the emitting material consistsof large (10 μm) grains as implied by the lack of spectral features,we find that these grains are typically located at or beyond the snowline, ~1-35 AU from the host stars, with an average distance of 14± 6 AU; however, smaller grains could be located at significantlygreater distances from the host stars. These distances correspond todust temperatures in the range ~50-450 K. Several of the disks are wellmodeled by a single dust temperature, possibly indicative of a ring-likestructure. However, a single dust temperature does not match the datafor other disks in the sample, implying a distribution of temperatureswithin these disks. For most stars with excesses, we detect an excess atboth IRS and Multiband Imaging Photometer for Spitzer (MIPS)wavelengths. Only three stars in this sample show a MIPS 70 μm excesswith no IRS excess, implying that very cold dust is rare aroundsolar-type stars.
| The main sequence from F to K stars of the solar neighbourhood in SDSS colours For an understanding of Galactic stellar populations in the SDSS filtersystem well defined stellar samples are needed. The nearby stars providea complete stellar sample representative for the thin disc population.We compare the filter transformations of different authors applied tothe main sequence stars from F to K dwarfs to SDSS filter system anddiscuss the properties of the main sequence. The location of the meanmain sequence in colour-magnitude diagrams is very sensitive tosystematic differences in the filter transformation. A comparison withfiducial sequences of star clusters observed in g', r', and i' show goodagreement. Theoretical isochrones from Padua and from Dartmouth havestill some problems, especially in the (r-i) colours.
| Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog We derive detailed theoretical models for 1074 nearby stars from theSPOCS (Spectroscopic Properties of Cool Stars) Catalog. The Californiaand Carnegie Planet Search has obtained high-quality (R~=70,000-90,000,S/N~=300-500) echelle spectra of over 1000 nearby stars taken with theHamilton spectrograph at Lick Observatory, the HIRES spectrograph atKeck, and UCLES at the Anglo Australian Observatory. A uniform analysisof the high-resolution spectra has yielded precise stellar parameters(Teff, logg, vsini, [M/H], and individual elementalabundances for Fe, Ni, Si, Na, and Ti), enabling systematic erroranalyses and accurate theoretical stellar modeling. We have created alarge database of theoretical stellar evolution tracks using the YaleStellar Evolution Code (YREC) to match the observed parameters of theSPOCS stars. Our very dense grids of evolutionary tracks eliminate theneed for interpolation between stellar evolutionary tracks and allowprecise determinations of physical stellar parameters (mass, age,radius, size and mass of the convective zone, surface gravity, etc.).Combining our stellar models with the observed stellar atmosphericparameters and uncertainties, we compute the likelihood for each set ofstellar model parameters separated by uniform time steps along thestellar evolutionary tracks. The computed likelihoods are used for aBayesian analysis to derive posterior probability distribution functionsfor the physical stellar parameters of interest. We provide a catalog ofphysical parameters for 1074 stars that are based on a uniform set ofhigh-quality spectral observations, a uniform spectral reductionprocedure, and a uniform set of stellar evolutionary models. We explorethis catalog for various possible correlations between stellar andplanetary properties, which may help constrain the formation anddynamical histories of other planetary systems.
| Search for associations containing young stars (SACY). I. Sample and searching method We report results from a high-resolution optical spectroscopic surveyaimed to search for nearby young associations and young stars amongoptical counterparts of ROSAT All-Sky Survey X-ray sources in theSouthern Hemisphere. We selected 1953 late-type (B-V~≥~0.6),potentially young, optical counterparts out of a total of 9574 1RXSsources for follow-up observations. At least one high-resolutionspectrum was obtained for each of 1511 targets. This paper is the firstin a series presenting the results of the SACY survey. Here we describeour sample and our observations. We describe a convergence method in the(UVW) velocity space to find associations. As an example, we discuss thevalidity of this method in the framework of the β Pic Association.
| An activity catalogue of southern stars We have acquired high-resolution echelle spectra of 225 F6-M5 type starsin the Southern hemisphere. The stars are targets or candidates to betargets for the Anglo-Australian Planet Search. CaII H& K line coreswere used to derive activity indices for all of these objects. Theindices were converted to the Mt. Wilson system of measurements andlogR'HK values determined. A number of these stars had nopreviously derived activity indices. In addition, we have also includedthe stars from Tinney et al. using our Mt. Wilson calibration. Theradial-velocity instability (also known as jitter) level was determinedfor all 21 planet-host stars in our data set. We find the jitter to beat a level considerably below the radial-velocity signatures in all butone of these systems. 19 stars from our sample were found to be active(logR'HK > -4.5) and thus have high levels of jitter.Radial-velocity analysis for planetary companions to these stars shouldproceed with caution.
| Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.
| How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| K dwarfs and the chemical evolution of the solar cylinder K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.
| A revision of the solar neighbourhood metallicity distribution We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.
| Some Cross-Reference Lists for the Catalog of Possible Nearby Stars Not Available
| Possible nearby stars brighter than tenth magnitude Basic data are compiled for 447 stars brighter than 10th visualmagnitude which may be within 25 pc of the sun and are missing from boththe Gliese (1969) and the Woolley et al. (1970) catalogs of nearbystars. The list includes 245 stars with photometric parallaxes, 17 starswith trigonometric parallaxes, and nine stars with dynamical parallaxes,all of which parallaxes are at least 0.040 arcsec, as well as 176 likelycandidates. The stars are grouped into six categories according to thereliability of absolute-magnitude estimates and ranked within each groupon the basis of calculated distance. The distance estimates incorporatea kinematic correction to the photometric parallaxes which is based onthe size of a star's proper motion. A list of stars brighter than 10thmag which appear in the Gliese but not in the Woolley et al. catalog isalso provided to facilitate cross-reference with existing catalogs ofnearby stars.
|
הכנס מאמר חדש
לינקים קשורים
הכנס לינק חדש
משמש של הקבוצה הבאה
|
תצפית ומידע אסטרומטרי
קבוצת-כוכבים: | צלב דרומי |
התרוממות ימנית: | 12h45m14.41s |
סירוב: | -57°21'28.8" |
גודל גלוי: | 7.827 |
מרחק: | 20.117 פארסק |
תנועה נכונה: | -200.8 |
תנועה נכונה: | -130 |
B-T magnitude: | 9.028 |
V-T magnitude: | 7.927 |
קטלוגים וכינוים:
|