Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

HD 233511


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Lithium abundances in metal-poor stars
Aims.Lithium abundances for 19 metal-poor stars are determined usinghigh-resolution spectroscopy. The abundances of stars on the lithiumplateau are discussed. Methods: All abundance results are derived fromNLTE statistical equilibrium calculations and spectrum synthesismethods. Results: In agreement with previous analyses it is found thatexcitation and de-excitation due to hydrogen collisions are negligiblefor the lithium line formation process, while charge transfer reactionsare an important source of thermalization. However, the resulting NLTEeffects on the determination of lithium abundances for metal-poor starsare negligible (<0.06 dex). Conclusions: .The mean lithium abundancefor stars on the lithium plateau determined from NLTE analyses is A(Li)~ 2.26, while it is 2.21 dex when charge transfer reactions areincluded. The latter result enhances the discrepancy between theobserved lithium abundances and the primordial lithium abundance asinferred by the WMAP analysis of the cosmic microwave background. Thisdiscrepancy may be explained by metal diffusion.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.

Potassium abundances in nearby metal-poor stars
Aims.The potassium abundances for 58 metal-poor stars are determinedusing high-resolution spectroscopy. The abundance trends in stars ofdifferent population are discussed. Methods: .All abundanceresults have been derived from NLTE statistical equilibrium calculationsand spectrum synthesis methods. Results: .The NLTE corrections aresignificant (-0.20 to -0.55 dex) and they depend on the effectivetemperatures and surface gravities. The potassium abundances of thindisk, thick disk and halo stars show distinct trends, such as in thecase of the α-elements. [K/Fe] gradually increases with a decreasein [Fe/H] for thin disk stars, [K/Fe] of thick disk stars is nearlyconstant at [K/Fe] ~ +0.30 dex; halo stars also have nearly constantvalues of [K/Fe] ~ +0.20 dex. Conclusions: .The deriveddependence between [K/Fe] and [Fe/H] is in agreement with thetheoretical prediction of published model calculations of the chemicalevolution of the Galaxy. The nearly constant [K/Mg] ratio with smallscatter suggests that the nucleosynthesis of potassium is closelycoupled to the α-elements.

Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars
Aims.Parameters for 55 nearby metal-poor stars are determined usinghigh-resolution spectroscopy. Together with similar data taken from arecent analysis, they are used to show trends of their Galacticevolution with stellar [Fe/H] or [Mg/H] abundances. The separation ofabundance ratios between disk and halo stars is used as a basiccriterion for population membership. Methods.After carefulselection of a clean subsample free of suspected or known binaries andpeculiar stars, abundances of Mg, Na and Al are based on NLTE kineticequilibrium calculations applied to spectrum synthesis methods. Results.The relation between [Na/Mg] and [Fe/H] is a continuousenrichment through all three Galactic populations spanning a range ofvalues between a metal-poor plateau at [ Na/Mg] = -0.7 and solar values.[Al/Mg] displays a step-like difference between stars of the Galactichalo with overline[Al/Mg] ˜ -0.45 and the two disk populations withoverline[Al/Mg] ˜ +0.10. [Al/Mg] ratios, together with the [Mg/Fe]ratios, asymmetric drift velocities V, and stellar evolutionary ages,make possible the individual discrimination between stars of the thickdisk and the halo. At present, this evidence is limited by the smallnumber of stars, and by the theoretical and empirical uncertainties ofstellar age determinations, but it achieves a high significance. Conclusions.While the stellar sample is not complete with respect tospace volume, the resulting abundances indicate the necessity to revisecurrent models of chemical evolution to allow for an adequate productionof Al in early stellar generations.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Chemical abundances of very metal-poor stars
High-resolution and high signal-to-noise ratio spectra of 32 verymetal-poor stars were obtained with the Coudé echellespectrograph mounted on the 2.16-m telescope at the NationalAstronomical Observatories (Xinglong, China). Equivalent widths of FeI,FeII, OI, NaI, MgI, AlI, SiI, SiII, KI, CaI, ScII, TiI, VI, CrI, MnI,NiI, CuI and BaII lines were measured. Stellar effective temperatureswere determined by colour indices. Stellar surface gravities werecalculated from Hipparcos parallaxes and stellar evolutionary tracks.Photospheric abundances of 16 elements were derived by localthermodynamical equilibrium analysis. Stellar space motions (U, V, W)and Galactic orbital parameters were calculated. Based on kinematics,sample stars were separated into dissipative collapse and accretioncomponents of halo population. The global kinematics of the twocomponents were analysed. Element abundances were discussed as functionsof metallicities. The results of oxygen and α-elements abundanceconfirmed the previous works. The [K/Fe] shows a gradual systematicincrease toward a lower metallicity, such as in the case ofα-elements. The [Ba/Fe] trend suggests that the s-processdominated Ba production at least for the metal-poor stars with[Fe/H]> -2.0.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Deep Photometry of the Globular Cluster M5: Distance Estimates from White Dwarf and Main-Sequence Stars
We present deep VI photometry of stars in the globular cluster M5 (NGC5904) based on images taken with the Hubble Space Telescope. Theresulting color-magnitude diagram reaches below V~27 mag, revealing theupper 2-3 mag of the white dwarf cooling sequence and main-sequencestars 8 mag and more below the turnoff. We fit the main sequence tosubdwarfs of known parallax to obtain a true distance modulus of(m-M)0=14.45+/-0.11 mag. A second distance estimate based onfitting the cluster white dwarf sequence to field white dwarfs withknown parallax yielded (m-M)0=14.67+/-0.18 mag. We discussthe nature of the difference between the two distance estimates andsuggest approaches for reducing the uncertainty in white dwarf fittingestimates for future studies. We couple our distance estimates withextensive photometry of the cluster's RR Lyrae variables to provide acalibration of the RR Lyrae absolute magnitude yieldingMV(RR)=0.42+/-0.10 mag at [Fe/H]=-1.11 dex. We provideanother luminosity calibration in the form of reddening-free Wasenheitfunctions. Comparison of our calibrations with predictions based onrecent models combining stellar evolution and pulsation theories showsencouraging agreement, and the existing differences may provide usefulfeedback to the models.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Lithium Abundance of Metal-poor Stars
High-resolution, high signal-to-noise ratio spectra have been obtainedfor 32 metal-poor stars. The equivalent widths of Li λ6708Åwere measured and the lithium abundances were derived. The averagelithium abundance of 21 stars on the lithium plateau is 2.33±0.02dex. The Lithium plateau exhibits a marginal trend along metallicity,dA(Li)/d[Fe/H] = 0.12±0.06, and no clear trend with the effectivetemperature. The trend indicates that the abundance of lithium plateaumay not be primordial and that a part of the lithium was produced inGalactic Chemical Evolution (GCE).

Abundances for metal-poor stars with accurate parallaxes. I. Basic data
We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

The u'g'r'i'z' Standard-Star System
We present the 158 standard stars that define the u'g'r'i'z' photometricsystem. These stars form the basis for the photometric calibration ofthe Sloan Digital Sky Survey. The defining instrument system andfilters, the observing process, the reduction techniques, and thesoftware used to create the stellar network are all described. Webriefly discuss the history of the star selection process, thederivation of a set of transformation equations for theUBVRCIC system, and plans for future work.

Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships
As an investigation of the origin of ``α-poor'' halo stars, weanalyze kinematic and abundance data for 73 intermediate-metallicitystars (-1>[Fe/H]>=-2) selected from Paper I of this series. We findevidence for a connection between the kinematics and the enhancement ofcertain element-to-iron ([X/Fe]) ratios in these stars. Statisticallysignificant correlations were found between [X/Fe] and galacticrest-frame velocities (vRF) for Na, Mg, Al, Si, Ca, and Ni,with marginally significant correlations existing for Ti and Y as well.We also find that the [X/Fe] ratios for these elements all correlatewith a similar level of significance with [Na/Fe]. Finally, we comparethe abundances of these halo stars against those of stars in nearbydwarf spheroidal (dSph) galaxies. We find significant differencesbetween the abundance ratios in the dSph stars and halo stars of similarmetallicity. From this result, it is unlikely that the halo stars in thesolar neighborhood, including even the ``α-poor'' stars, were oncemembers of disrupted dSph galaxies similar to those studied to date.

A search for previously unrecognized metal-poor subdwarfs in the Hipparcos astrometric catalogue
We have identified 317 stars included in the Hipparcos astrometriccatalogue that have parallaxes measured to a precision of better than 15per cent, and the location of which in the(MV,(B-V)T) diagram implies a metallicitycomparable to or less than that of the intermediate-abundance globularcluster M5. We have undertaken an extensive literature search to locateStrömgren, Johnson/Cousins and Walraven photometry for over 120stars. In addition, we present new UBV(RI)C photometry of 201of these candidate halo stars, together with similar data for a further14 known metal-poor subdwarfs. These observations provide the firstextensive data set of RCIC photometry ofmetal-poor, main-sequence stars with well-determined trigonometricparallaxes. Finally, we have obtained intermediate-resolution opticalspectroscopy of 175 stars. 47 stars still lack sufficient supplementaryobservations for population classification; however, we are able toestimate abundances for 270 stars, or over 80 per cent of the sample.The overwhelming majority have near-solar abundance, with theirinclusion in the present sample stemming from errors in the colourslisted in the Hipparcos catalogue. Only 44 stars show consistentevidence of abundances below [Fe/H]=-1.0. Nine are additions to thesmall sample of metal-poor subdwarfs with accurate photometry. Weconsider briefly the implication of these results for clustermain-sequence fitting.

Detection of Metal-poor Stars in the Direction of the North Galactic Pole
A simple approach to detecting metal-poor stars is to measure amagnesium index, which depends on the Mg H band plus the three nearby Mgb lines and is derived through intermediate-band interference filters.An empirically established line of demarcation in the Mg index versusB-V diagram separates metal-poor stars from solar-abundance stars. Afurther separation between metal-poor dwarfs and giants depends on B-Vprimarily dwarfs for B-V<0.55, giants for B-V>0.7, with both dwarfsand giants falling in the transition region. For the metal-poor giantsthe distance from the demarcation line correlates well with [Fe/H],permitting estimates of stellar abundances. Stars in two regions on thesky in the vicinity of the north Galactic pole have been observed withsuch a set of filters. Eighteen stars (6% of the population of 299) inthe sample covering the V range 8.7 to 15.6 and 48 stars (31% of thepopulation of 163) in a deeper probe to V=19.9 found through thisprocess are suspected metal-poor stars according to their Mg indices.Twenty-three are specifically deemed giants, with<[Fe/H]><=-1.5.

Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis
We describe observations and abundance analysis of a high-resolution,high signal-to-noise ratio survey of 168 stars, most of which aremetal-poor dwarfs. We follow a self-consistent LTE analysis technique todetermine the stellar parameters and abundances, and we estimate theeffects of random and systematic uncertainties on the resultingabundances. Element-to-iron ratios are derived for key α-, odd-Z,Fe-peak, and r- and s-process elements. Effects of non-LTE on theanalysis of Fe I lines are shown to be very small on average.Spectroscopically determined surface gravities are derived that arequite close to those obtained from Hipparcos parallaxes.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

A Consistency Test of Spectroscopic Gravities for Late-Type Stars
Chemical analyses of late-type stars are usually carried out followingthe classical recipe: LTE line formation and homogeneous,plane-parallel, flux-constant, and LTE model atmospheres. We reviewdifferent results in the literature that have suggested significantinconsistencies in the spectroscopic analyses, pointing out thedifficulties in deriving independent estimates of the stellarfundamental parameters and hence, detecting systematic errors. Thetrigonometric parallaxes measured by the Hipparcos mission provideaccurate appraisals of the stellar surface gravity for nearby stars,which are used here to check the gravities obtained from thephotospheric iron ionization balance. We find an approximate agreementfor stars in the metallicity range -1.0<=[Fe/H]<=0, but thecomparison shows that the differences between the spectroscopic andtrigonometric gravities decrease toward lower metallicities for moremetal-deficient dwarfs (-2.5<=[Fe/H]<=-1.0), which casts a shadowupon the abundance analyses for extreme metal-poor stars that make useof the ionization equilibrium to constrain the gravity. The comparisonwith the strong-line gravities derived by Edvardsson and Fuhrmannconfirms that this method provide systematically larger gravities thanthe ionization balance. The strong-line gravities get closer to thephysical ones for the stars analyzed by Fuhrmann, but they are evenfurther away than the iron ionization gravities for the stars of lowergravities in Edvardsson's sample. The confrontation of the deviations ofthe iron ionization gravities in metal-poor stars, reported here withdepartures from the excitation balance found in the literature, showthat they are likely to be induced by the same physical mechanism.

Radial Velocities of Population II Stars. II.
A program for radial velocity measurements of Population II stars wasstarted in 1988 and was carried out during six observing runs. Theprogram includes metal-deficient stars, components of Population IIvisual binaries or common proper motion stars, suspected radial velocityvariables and the Population II stars from the Hipparcos program. Themeasurements were made with the 1 meter reflector at the MaidanakObservatory in Uzbekistan. The average error of a single measurement isabout 0.6 km/s, but for stars at 13 mag or for extremely metal-deficientstars the error is about 2.5 km/s. The catalog contains 621 measurementsfor 164 stars.

HIPPARCOS subdwarf parallaxes - Metal-rich clusters and the thick disk
We have used main-sequence fitting to calibrate the distances to theglobular clusters NGC 6397, M5, NGC 288, M71, and 47 Tucanae, matchingthe cluster photometry against data for subdwarfs with precise Hipparcosparallax measurements and accurate abundance determinations. Both thecluster and subdwarf abundance scales are tied to high-resolutionspectroscopic analyses. The distance moduli that we derive for the fiveclusters are 12.24, 14.52, 15.00, 13.19, and 13.59 mag, withuncertainties of 0.15 mag. These distances are higher than those derivedin pre-Hipparcos investigations. The calibrated cluster color-magnitudediagrams provide fiducial sequences in the (MV, B - V)-plane, outliningthe distribution expected for stars of a particular abundance. We havecombined the photometric data for NGC 6397, M5, and 47 Tucanae with themean color-magnitude relation delineated by nearby FGK dwarfs to definea reference grid in the (MV, B - V)-plane, and we have matched this gridagainst data for stars drawn from the Lowell Proper Motion Survey.Limiting the comparison to nonbinaries, there are significantly fewersubluminous stars than expected given the spectroscopic metallicitydistribution. Inverting the analysis, this implies a reduction by afactor of three in the proportion of stars contributing to themetal-poor tail of the Galactic disk. We discuss the implications ofthese results.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Younger and Brighter - New Distances to Globular Clusters Based on HIPPARCOS Parallax Measurements of Local Subdwarfs
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114..161R&db_key=AST

Astrophysics in 1996
The loudest astronomical headlines of the year came from both very near(planets orbiting stars in the solar neighborhood) and very far(galaxies and parts of galaxies at redshifts of 1 to 3 and more). Weexplore these and other happenings in our Solar System (Galileo atJupiter, Comet Hyakutake), Milky Way (the bursting pulsar, spottedstars), Local Group (masers, MACHOs, and more), and Universe(gravitational lensing, an assortment of extrema). (SECTION: InvitedReview Paper)

The Tokyo PMC catalog 90-93: Catalog of positions of 6649 stars observed in 1990 through 1993 with Tokyo photoelectric meridian circle
The sixth annual catalog of the Tokyo Photoelectric Meridian Circle(PMC) is presented for 6649 stars which were observed at least two timesin January 1990 through March 1993. The mean positions of the starsobserved are given in the catalog at the corresponding mean epochs ofobservations of individual stars. The coordinates of the catalog arebased on the FK5 system, and referred to the equinox and equator ofJ2000.0. The mean local deviations of the observed positions from theFK5 catalog positions are constructed for the basic FK5 stars to comparewith those of the Tokyo PMC Catalog 89 and preliminary Hipparcos resultsof H30.

Photometry of Stars with Large Proper Motion
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2300W&db_key=AST

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Lynx
Ascensió Recta:08h19m22.57s
Declinació:+54°05'09.6"
Magnitud Aparent:9.666
Moviment propi RA:-35.8
Moviment propi Dec:-625.9
B-T magnitude:10.234
V-T magnitude:9.713

Catàlegs i designacions:
Noms Propis   (Edit)
HD 1989HD 233511
TYCHO-2 2000TYC 3797-335-1
HIPHIP 40778

→ Sol·licitar més catàlegs i designacions de VizieR